Internal
problem
ID
[8933]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
74
Problem
number
:
4(i)
Date
solved
:
Tuesday, September 30, 2025 at 06:00:17 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
ode:=diff(diff(diff(y(x),x),x),x)-3*I*diff(diff(y(x),x),x)-3*diff(y(x),x)+I*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-3*I*D[y[x],{x,2}]-3*D[y[x],x]+I*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(complex(0, -3)*Derivative(y(x), (x, 2)) + complex(0, 1)*y(x) - 3*Derivative(y(x), x) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)