Internal
problem
ID
[8935]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
79
Problem
number
:
2(c)
Date
solved
:
Tuesday, September 30, 2025 at 06:00:18 PM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-diff(diff(diff(diff(y(x),x),x),x),x)-diff(y(x),x)+y(x) = 0; ic:=[y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0, (D@@3)(y)(0) = 0, (D@@4)(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,5}]-D[y[x],{x,4}]-D[y[x],x]+y[x]==0; ic={y[0]==1,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0,Derivative[3][y][0]==0,Derivative[4][y][0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - Derivative(y(x), x) - Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0, Subs(Derivative(y(x), (x, 2)), x, 0): 0, Subs(Derivative(y(x), (x, 3)), x, 0): 0, Subs(Derivative(y(x), (x, 4)), x, 0): 0} dsolve(ode,func=y(x),ics=ics)