43.11.5 problem 1(e)

Internal problem ID [8955]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 2. Linear equations with constant coefficients. Page 93
Problem number : 1(e)
Date solved : Tuesday, September 30, 2025 at 06:00:30 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=x^{2} {\mathrm e}^{3 x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 28
ode:=diff(diff(y(x),x),x)+9*y(x) = x^2*exp(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \cos \left (3 x \right ) c_1 +\frac {\left (x -\frac {1}{3}\right )^{2} {\mathrm e}^{3 x}}{18}+\sin \left (3 x \right ) c_2 \]
Mathematica. Time used: 0.013 (sec). Leaf size: 36
ode=D[y[x],{x,2}]+9*y[x]==x^2*Exp[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{162} e^{3 x} (1-3 x)^2+c_1 \cos (3 x)+c_2 \sin (3 x) \end{align*}
Sympy. Time used: 0.081 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*exp(3*x) + 9*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )} + \frac {x^{2} e^{3 x}}{18} - \frac {x e^{3 x}}{27} + \frac {e^{3 x}}{162} \]