Internal
problem
ID
[8957]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
2.
Linear
equations
with
constant
coefficients.
Page
93
Problem
number
:
1(g)
Date
solved
:
Tuesday, September 30, 2025 at 06:00:32 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+I*diff(y(x),x)+2*y(x) = 2*cosh(2*x)+exp(-2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+I*D[y[x],x]+2*y[x]==2*Cosh[2*x]+Exp[-2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(complex(0, 1)*Derivative(y(x), x) + 2*y(x) - 2*cosh(2*x) + Derivative(y(x), (x, 2)) - exp(-2*x),0) ics = {} dsolve(ode,func=y(x),ics=ics)