Internal
problem
ID
[8960]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
3.
Linear
equations
with
variable
coefficients.
Page
108
Problem
number
:
1(c.1)
Date
solved
:
Tuesday, September 30, 2025 at 06:00:34 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _homogeneous]]
With initial conditions
ode:=diff(diff(y(x),x),x)+1/x*diff(y(x),x)-1/x^2*y(x) = 0; ic:=[y(1) = 1, D(y)(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+1/x*D[y[x],x]-1/x^2*y[x]==0; ic={y[1]==1,Derivative[1][y][1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x - y(x)/x**2,0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics)