43.16.2 problem 1(b)

Internal problem ID [8986]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number : 1(b)
Date solved : Tuesday, September 30, 2025 at 06:00:55 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x^{2} y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{\sqrt {x}}+c_2 x \]
Mathematica. Time used: 0.008 (sec). Leaf size: 18
ode=2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{\sqrt {x}}+c_2 x \end{align*}
Sympy. Time used: 0.085 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x}} + C_{2} x \]