Internal
problem
ID
[8999]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
4.
Linear
equations
with
Regular
Singular
Points.
Page
154
Problem
number
:
1(f)
Date
solved
:
Tuesday, September 30, 2025 at 06:01:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=(x^2+x-2)^2*diff(diff(y(x),x),x)+3*(x+2)*diff(y(x),x)+(x-1)*y(x) = 0; dsolve(ode,y(x),type='series',x=-2);
ode=(x^2+x-2)^2*D[y[x],{x,2}]+3*(x+2)*D[y[x],x]+(x-1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-2,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 1)*y(x) + (3*x + 6)*Derivative(y(x), x) + (x**2 + x - 2)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=-2,n=8)