Internal
problem
ID
[9002]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
4.
Linear
equations
with
Regular
Singular
Points.
Page
154
Problem
number
:
2(c)
Date
solved
:
Tuesday, September 30, 2025 at 06:01:10 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=4*x^2*diff(diff(y(x),x),x)+(4*x^4-5*x)*diff(y(x),x)+(x^2+2)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=4*x^2*D[y[x],{x,2}]+(4*x^4-5*x)*D[y[x],x]+(x^2+2)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + (x**2 + 2)*y(x) + (4*x**4 - 5*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)