Internal
problem
ID
[9036]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
5.
Existence
and
uniqueness
of
solutions
to
first
order
equations.
Page
198
Problem
number
:
1(d)
Date
solved
:
Tuesday, September 30, 2025 at 06:02:18 PM
CAS
classification
:
[_separable]
ode:=cos(x)*cos(y(x))^2-sin(x)*sin(2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=Cos[x]*Cos[y[x]]^2-Sin[x]*Sin[2*y[x]]*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sin(x)*sin(2*y(x))*Derivative(y(x), x) + cos(x)*cos(y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)