43.22.11 problem 2(c)
Internal
problem
ID
[9043]
Book
:
An
introduction
to
Ordinary
Differential
Equations.
Earl
A.
Coddington.
Dover.
NY
1961
Section
:
Chapter
5.
Existence
and
uniqueness
of
solutions
to
first
order
equations.
Page
198
Problem
number
:
2(c)
Date
solved
:
Tuesday, September 30, 2025 at 06:02:22 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
\begin{align*} 5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime }&=0 \end{align*}
✓ Maple. Time used: 0.180 (sec). Leaf size: 346
ode:=5*x^3*y(x)^2+2*y(x)+(3*x^4*y(x)+2*x)*diff(y(x),x) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= \frac {\frac {12^{{2}/{3}} \left (12^{{1}/{3}} c_1^{2}+{\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{2}/{3}}\right )^{2}}{36 c_1^{2} {\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{2}/{3}}}-1}{x^{3}} \\
y &= \frac {-\frac {c_1 {\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{2}/{3}}}{3}+\frac {3 \,2^{{1}/{3}} \left (i 3^{{1}/{6}}-\frac {3^{{2}/{3}}}{3}\right ) \left (x^{2}+\frac {\sqrt {-12 c_1^{4}+81 x^{4}}}{9}\right ) {\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{1}/{3}}}{4}-\frac {\left (i 3^{{5}/{6}}+3^{{1}/{3}}\right ) c_1^{3} 2^{{2}/{3}}}{6}}{{\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{2}/{3}} c_1 \,x^{3}} \\
y &= -\frac {3 \left (\frac {4 c_1 {\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{2}/{3}}}{9}+2^{{1}/{3}} \left (i 3^{{1}/{6}}+\frac {3^{{2}/{3}}}{3}\right ) \left (x^{2}+\frac {\sqrt {-12 c_1^{4}+81 x^{4}}}{9}\right ) {\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{1}/{3}}-\frac {2 \left (i 3^{{5}/{6}}-3^{{1}/{3}}\right ) c_1^{3} 2^{{2}/{3}}}{9}\right )}{4 {\left (\left (9 x^{2}+\sqrt {-12 c_1^{4}+81 x^{4}}\right ) c_1 \right )}^{{2}/{3}} c_1 \,x^{3}} \\
\end{align*}
✓ Mathematica. Time used: 0.137 (sec). Leaf size: 84
ode=(5*x^3*y[x]^2+2*y[x])+(3*x^4*y[x]+2*x)*D[y[x],x]==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
\text {Solve}\left [\int _1^{\frac {3 y(x) x^3+8}{2^{2/3} \sqrt [3]{5} \left (3 y(x) x^3+2\right )}}\frac {1}{K[1]^3-\frac {21 K[1]}{2 \sqrt [3]{2} 5^{2/3}}+1}dK[1]=\frac {4}{27} \sqrt [3]{2} 5^{2/3} \log (x)+c_1,y(x)\right ]
\]
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(5*x**3*y(x)**2 + (3*x**4*y(x) + 2*x)*Derivative(y(x), x) + 2*y(x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
Timed Out