43.23.2 problem 1(b)

Internal problem ID [9046]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number : 1(b)
Date solved : Tuesday, September 30, 2025 at 06:02:24 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }+{\mathrm e}^{x} y^{\prime }&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=diff(diff(y(x),x),x)+exp(x)*diff(y(x),x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -c_1 \,\operatorname {Ei}_{1}\left ({\mathrm e}^{x}\right )+x +c_2 \]
Mathematica. Time used: 21.764 (sec). Leaf size: 28
ode=D[y[x],{x,2}]+Exp[x]*D[y[x],x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\left (e^{-e^{K[1]}} c_1+1\right )dK[1]+c_2 \end{align*}
Sympy. Time used: 0.652 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(exp(x)*Derivative(y(x), x) - exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} \operatorname {Ei}{\left (- e^{x} \right )} + \log {\left (e^{x} \right )} \]