44.1.16 problem 2(b)

Internal problem ID [9074]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number : 2(b)
Date solved : Tuesday, September 30, 2025 at 06:03:45 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x^{2}} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = x*exp(x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x^{2}}}{2}+c_1 \]
Mathematica. Time used: 0.003 (sec). Leaf size: 17
ode=D[y[x],x]==x*Exp[x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{x^2}}{2}+c_1 \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*exp(x**2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {e^{x^{2}}}{2} \]