44.1.31 problem 4

Internal problem ID [9089]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 06:03:54 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }&=2 x y+1 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 20
ode:=diff(y(x),x) = 2*x*y(x)+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (\sqrt {\pi }\, \operatorname {erf}\left (x \right )+2 c_1 \right ) {\mathrm e}^{x^{2}}}{2} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 27
ode=D[y[x],x]==2*x*y[x]+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^{x^2} \left (\sqrt {\pi } \text {erf}(x)+2 c_1\right ) \end{align*}
Sympy. Time used: 0.184 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + \frac {\sqrt {\pi } \operatorname {erf}{\left (x \right )}}{2}\right ) e^{x^{2}} \]