44.2.4 problem 1(d)

Internal problem ID [9096]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS. Page 12
Problem number : 1(d)
Date solved : Tuesday, September 30, 2025 at 06:04:07 PM
CAS classification : [_separable]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }+1+y^{2}&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 11
ode:=(x^2+1)*diff(y(x),x)+1+y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\tan \left (\arctan \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.177 (sec). Leaf size: 57
ode=(1+x^2)*D[y[x],x]+1+y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1]^2+1}dK[1]\&\right ]\left [\int _1^x-\frac {1}{K[2]^2+1}dK[2]+c_1\right ]\\ y(x)&\to -i\\ y(x)&\to i \end{align*}
Sympy. Time used: 0.177 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), x) + y(x)**2 + 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (C_{1} - \operatorname {atan}{\left (x \right )} \right )} \]