44.5.2 problem 1(b)

Internal problem ID [9158]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 1(b)
Date solved : Tuesday, September 30, 2025 at 06:10:36 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{2} y^{\prime }-3 x y-2 y^{2}&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=x^2*diff(y(x),x)-3*x*y(x)-2*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{3}}{-x^{2}+c_1} \]
Mathematica. Time used: 0.089 (sec). Leaf size: 25
ode=x^2*D[y[x],x]-3*x*y[x]-2*y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x^3}{x^2-c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.116 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - 3*x*y(x) - 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{3}}{C_{1} - x^{2}} \]