44.5.16 problem 5(a)

Internal problem ID [9172]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 5(a)
Date solved : Tuesday, September 30, 2025 at 06:11:51 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} y^{\prime }&=\frac {1-x y^{2}}{2 x^{2} y} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 32
ode:=diff(y(x),x) = 1/2*(1-x*y(x)^2)/x^2/y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {x \left (\ln \left (x \right )+c_1 \right )}}{x} \\ y &= -\frac {\sqrt {x \left (\ln \left (x \right )+c_1 \right )}}{x} \\ \end{align*}
Mathematica. Time used: 0.112 (sec). Leaf size: 40
ode=D[y[x],x]==(1-x*y[x]^2)/(2*x^2*y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt {\log (x)+c_1}}{\sqrt {x}}\\ y(x)&\to \frac {\sqrt {\log (x)+c_1}}{\sqrt {x}} \end{align*}
Sympy. Time used: 0.206 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (-x*y(x)**2 + 1)/(2*x**2*y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {\frac {C_{1} + \log {\left (x \right )}}{x}}, \ y{\left (x \right )} = \sqrt {\frac {C_{1} + \log {\left (x \right )}}{x}}\right ] \]