44.5.20 problem 7(b)

Internal problem ID [9176]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number : 7(b)
Date solved : Tuesday, September 30, 2025 at 06:12:02 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} {\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x}&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 31
ode:=exp(x/y(x))-y(x)/x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {\textit {\_a}}{-\textit {\_a}^{2}+{\mathrm e}^{\frac {1}{\textit {\_a}}}}d \textit {\_a} +\ln \left (x \right )+c_1 \right ) x \]
Mathematica. Time used: 0.119 (sec). Leaf size: 41
ode=Exp[x/y[x]]-y[x]/x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]}{K[1]^2-e^{\frac {1}{K[1]}}}dK[1]=-\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.917 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(exp(x/y(x)) - y(x)*Derivative(y(x), x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {u_{1} e^{u_{1}}}{u_{1}^{2} e^{u_{1}} - 1}\, du_{1}} \]