44.7.12 problem 3(b)

Internal problem ID [9202]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number : 3(b)
Date solved : Tuesday, September 30, 2025 at 06:14:26 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=1 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 21
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x -\ln \left (2\right )+\ln \left ({\mathrm e}^{-2 x} c_1 -c_2 \right ) \]
Mathematica. Time used: 0.414 (sec). Leaf size: 45
ode=D[y[x],{x,2}]+(D[y[x],x])^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-1) (K[1]+1)}dK[1]\&\right ][c_1-K[2]]dK[2]+c_2 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out