44.9.6 problem 1(f)

Internal problem ID [9228]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number : 1(f)
Date solved : Tuesday, September 30, 2025 at 06:15:24 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-9 y^{\prime }+20 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-9*diff(y(x),x)+20*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 +c_2 \,{\mathrm e}^{x}\right ) {\mathrm e}^{4 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 20
ode=D[y[x],{x,2}]-9*D[y[x],x]+20*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{4 x} \left (c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.091 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(20*y(x) - 9*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x}\right ) e^{4 x} \]