44.11.1 problem 1(a)

Internal problem ID [9271]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 1(a)
Date solved : Tuesday, September 30, 2025 at 06:15:56 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+4 y&=\tan \left (2 x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 33
ode:=diff(diff(y(x),x),x)+4*y(x) = tan(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (2 x \right ) c_2 +\cos \left (2 x \right ) c_1 -\frac {\cos \left (2 x \right ) \ln \left (\sec \left (2 x \right )+\tan \left (2 x \right )\right )}{4} \]
Mathematica. Time used: 0.027 (sec). Leaf size: 40
ode=D[y[x],{x,2}]+4*y[x]==Tan[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{4} \cos (2 x) \text {arctanh}(\sin (2 x))+c_1 \cos (2 x)+\frac {1}{4} (-1+4 c_2) \sin (2 x) \end{align*}
Sympy. Time used: 0.263 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - tan(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \sin {\left (2 x \right )} + \left (C_{1} + \frac {\log {\left (\sin {\left (2 x \right )} - 1 \right )}}{8} - \frac {\log {\left (\sin {\left (2 x \right )} + 1 \right )}}{8}\right ) \cos {\left (2 x \right )} \]