44.11.4 problem 1(d)

Internal problem ID [9274]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 1(d)
Date solved : Tuesday, September 30, 2025 at 06:15:58 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&={\mathrm e}^{-x} \sec \left (2 x \right ) \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 39
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+5*y(x) = exp(-x)*sec(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{-x} \left (-\frac {\ln \left (\sec \left (2 x \right )\right ) \cos \left (2 x \right )}{2}+2 c_1 \cos \left (2 x \right )+\sin \left (2 x \right ) \left (x +2 c_2 \right )\right )}{2} \]
Mathematica. Time used: 0.028 (sec). Leaf size: 42
ode=D[y[x],{x,2}]+2*D[y[x],x]+5*y[x]==Exp[-x]*Sec[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} e^{-x} (2 (x+2 c_1) \sin (2 x)+\cos (2 x) (\log (\cos (2 x))+4 c_2)) \end{align*}
Sympy. Time used: 0.352 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - exp(-x)/cos(2*x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\left (C_{1} + \frac {x}{2}\right ) \sin {\left (2 x \right )} + \left (C_{2} + \frac {\log {\left (\cos {\left (2 x \right )} \right )}}{4}\right ) \cos {\left (2 x \right )}\right ) e^{- x} \]