44.11.7 problem 2(a)

Internal problem ID [9277]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number : 2(a)
Date solved : Tuesday, September 30, 2025 at 06:16:00 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y&=\sec \left (x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+y(x) = sec(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (\sec \left (x \right )\right ) \cos \left (x \right )+\cos \left (x \right ) c_1 +\sin \left (x \right ) \left (x +c_2 \right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+y[x]==Sec[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to (x+c_2) \sin (x)+\cos (x) (\log (\cos (x))+c_1) \end{align*}
Sympy. Time used: 0.124 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 2)) - 1/cos(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x\right ) \sin {\left (x \right )} + \left (C_{2} + \log {\left (\cos {\left (x \right )} \right )}\right ) \cos {\left (x \right )} \]