44.12.11 problem 8

Internal problem ID [9301]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number : 8
Date solved : Tuesday, September 30, 2025 at 06:16:16 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (x +1\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=x*diff(diff(y(x),x),x)-(2*x+1)*diff(y(x),x)+(1+x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_2 \,x^{2}+c_1 \right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 23
ode=x*D[y[x],{x,2}]-(2*x+1)*D[y[x],x]+(x+1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^x \left (c_2 x^2+2 c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + (x + 1)*y(x) - (2*x + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False