44.13.1 problem 1

Internal problem ID [9302]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 1
Date solved : Tuesday, September 30, 2025 at 06:16:17 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{x}+c_3 \,{\mathrm e}^{2 x} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 25
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^x+\frac {1}{2} c_2 e^{2 x}+c_3 \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{x} + C_{3} e^{2 x} \]