44.13.4 problem 4

Internal problem ID [9305]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 4
Date solved : Tuesday, September 30, 2025 at 06:16:18 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 37
ode:=diff(diff(diff(y(x),x),x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x}+c_2 \,{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 56
ode=D[y[x],{x,3}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (c_3 e^{3 x/2} \cos \left (\frac {\sqrt {3} x}{2}\right )+c_2 e^{3 x/2} \sin \left (\frac {\sqrt {3} x}{2}\right )+c_1\right ) \end{align*}
Sympy. Time used: 0.073 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{- x} + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{\frac {x}{2}} \]