44.13.8 problem 8

Internal problem ID [9309]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 8
Date solved : Tuesday, September 30, 2025 at 06:16:19 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 29
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+5*diff(diff(y(x),x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 2 c_4 \cos \left (x \right )^{2}+\left (2 c_3 \sin \left (x \right )+c_2 \right ) \cos \left (x \right )+c_1 \sin \left (x \right )-c_4 \]
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode=D[y[x],{x,4}]+5*D[y[x],{x,2}]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 \cos (2 x)+c_4 \sin (x)+\cos (x) (2 c_2 \sin (x)+c_3) \end{align*}
Sympy. Time used: 0.041 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \sin {\left (2 x \right )} + C_{3} \cos {\left (x \right )} + C_{4} \cos {\left (2 x \right )} \]