44.13.13 problem 13

Internal problem ID [9314]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 13
Date solved : Tuesday, September 30, 2025 at 06:16:21 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)-6*diff(diff(y(x),x),x)+11*diff(y(x),x)-6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 \,{\mathrm e}^{2 x}+c_2 +c_3 \,{\mathrm e}^{x}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 25
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+11*D[y[x],x]-6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x \left (e^x \left (c_3 e^x+c_2\right )+c_1\right ) \end{align*}
Sympy. Time used: 0.098 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*y(x) + 11*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{x} + C_{3} e^{2 x}\right ) e^{x} \]