Internal
problem
ID
[9323]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
2.
Section
2.7.
HIGHER
ORDER
LINEAR
EQUATIONS,
COUPLED
HARMONIC
OSCILLATORS
Page
98
Problem
number
:
19(c)
Date
solved
:
Tuesday, September 30, 2025 at 06:16:25 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)