44.13.22 problem 19(c)

Internal problem ID [9323]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number : 19(c)
Date solved : Tuesday, September 30, 2025 at 06:16:25 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \sin \left (\ln \left (x \right )\right )+c_3 \cos \left (\ln \left (x \right )\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 22
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_3 x+c_1 \cos (\log (x))+c_2 \sin (\log (x)) \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} x + C_{2} \sin {\left (\log {\left (x \right )} \right )} + C_{3} \cos {\left (\log {\left (x \right )} \right )} \]