44.14.6 problem 1(f)

Internal problem ID [9330]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number : 1(f)
Date solved : Tuesday, September 30, 2025 at 06:16:28 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+y(x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (x \right ) c_2 +\cos \left (x \right ) c_1 +\frac {{\mathrm e}^{x}}{2} \]
Mathematica. Time used: 0.031 (sec). Leaf size: 53
ode=D[y[x],{x,2}]+y[x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (x) \int _1^x-e^{K[1]} \sin (K[1])dK[1]+\sin (x) \int _1^xe^{K[2]} \cos (K[2])dK[2]+c_1 \cos (x)+c_2 \sin (x) \end{align*}
Sympy. Time used: 0.033 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )} + \frac {e^{x}}{2} \]