44.17.6 problem 1(c) solving directly

Internal problem ID [9363]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number : 1(c) solving directly
Date solved : Tuesday, September 30, 2025 at 06:17:48 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }-y&=2 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 10
ode:=diff(y(x),x)-y(x) = 2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2+{\mathrm e}^{x} c_1 \]
Mathematica. Time used: 0.015 (sec). Leaf size: 18
ode=D[y[x],x]-y[x]==2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -2+c_1 e^x\\ y(x)&\to -2 \end{align*}
Sympy. Time used: 0.064 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), x) - 2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} - 2 \]