44.17.15 problem 2(b) solving using series

Internal problem ID [9372]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number : 2(b) solving using series
Date solved : Tuesday, September 30, 2025 at 06:17:54 PM
CAS classification : [_separable]

\begin{align*} x^{2} y^{\prime }&=y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple
Order:=8; 
ode:=x^2*diff(y(x),x) = y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ \text {No solution found} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 13
ode=x^2*D[y[x],x]==y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_1 e^{-1/x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=8)
 
ValueError : ODE x**2*Derivative(y(x), x) - y(x) does not match hint 1st_power_series