44.19.6 problem 2(b)

Internal problem ID [9400]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number : 2(b)
Date solved : Tuesday, September 30, 2025 at 06:18:16 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\sin \left (x \right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 49
Order:=8; 
ode:=x*diff(diff(y(x),x),x)+sin(x)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{18} x^{4}-\frac {53}{10800} x^{6}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{3}+\frac {1}{60} x^{5}-\frac {19}{15120} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 56
ode=x*D[y[x],{x,2}]+Sin[x]*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_2 \left (-\frac {19 x^7}{15120}+\frac {x^5}{60}-\frac {x^3}{6}+x\right )+c_1 \left (-\frac {53 x^6}{10800}+\frac {x^4}{18}-\frac {x^2}{2}+1\right ) \]
Sympy. Time used: 2.165 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + y(x)*sin(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{2} x + C_{1} + O\left (x^{8}\right ) \]