44.22.6 problem 1(f)

Internal problem ID [9435]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number : 1(f)
Date solved : Tuesday, September 30, 2025 at 06:18:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 33
Order:=8; 
ode:=(x^2+1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}+\frac {1}{24} x^{4}-\frac {1}{80} x^{6}\right ) y \left (0\right )+x y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 34
ode=(x^2+1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_1 \left (-\frac {x^6}{80}+\frac {x^4}{24}-\frac {x^2}{2}+1\right )+c_2 x \]
Sympy. Time used: 0.237 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{6}}{80} + \frac {x^{4}}{24} - \frac {x^{2}}{2} + 1\right ) + C_{1} x + O\left (x^{8}\right ) \]