44.28.2 problem 1(b)

Internal problem ID [9475]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number : 1(b)
Date solved : Tuesday, September 30, 2025 at 06:19:15 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=4 x \left (t \right )-2 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=5 x \left (t \right )+2 y \left (t \right ) \end{align*}
Maple. Time used: 0.127 (sec). Leaf size: 58
ode:=[diff(x(t),t) = 4*x(t)-2*y(t), diff(y(t),t) = 5*x(t)+2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{3 t} \left (\sin \left (3 t \right ) c_1 +\cos \left (3 t \right ) c_2 \right ) \\ y \left (t \right ) &= \frac {{\mathrm e}^{3 t} \left (\sin \left (3 t \right ) c_1 +3 \sin \left (3 t \right ) c_2 -3 \cos \left (3 t \right ) c_1 +\cos \left (3 t \right ) c_2 \right )}{2} \\ \end{align*}
Mathematica. Time used: 0.005 (sec). Leaf size: 70
ode={D[x[t],t]==4*x[t]-2*y[t],D[y[t],t]==5*x[t]+2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{3} e^{3 t} (3 c_1 \cos (3 t)+(c_1-2 c_2) \sin (3 t))\\ y(t)&\to \frac {1}{3} e^{3 t} (3 c_2 \cos (3 t)+(5 c_1-c_2) \sin (3 t)) \end{align*}
Sympy. Time used: 0.074 (sec). Leaf size: 65
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-4*x(t) + 2*y(t) + Derivative(x(t), t),0),Eq(-5*x(t) - 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \left (\frac {C_{1}}{5} - \frac {3 C_{2}}{5}\right ) e^{3 t} \cos {\left (3 t \right )} - \left (\frac {3 C_{1}}{5} + \frac {C_{2}}{5}\right ) e^{3 t} \sin {\left (3 t \right )}, \ y{\left (t \right )} = C_{1} e^{3 t} \cos {\left (3 t \right )} - C_{2} e^{3 t} \sin {\left (3 t \right )}\right ] \]