Internal
problem
ID
[9477]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
10.
Systems
of
First-Order
Equations.
Section
10.3
Homogeneous
Linear
Systems
with
Constant
Coefficients.
Page
387
Problem
number
:
1(d)
Date
solved
:
Tuesday, September 30, 2025 at 06:19:17 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 4*x(t)-3*y(t), diff(y(t),t) = 8*x(t)-6*y(t)]; dsolve(ode);
ode={D[x[t],t]==4*x[t]-3*y[t],D[y[t],t]==8*x[t]-6*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 3*y(t) + Derivative(x(t), t),0),Eq(-8*x(t) + 6*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)