44.28.6 problem 1(f)

Internal problem ID [9479]
Book : Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section : Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number : 1(f)
Date solved : Tuesday, September 30, 2025 at 06:19:18 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-4 x \left (t \right )-y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )-2 y \left (t \right ) \end{align*}
Maple. Time used: 0.111 (sec). Leaf size: 29
ode:=[diff(x(t),t) = -4*x(t)-y(t), diff(y(t),t) = x(t)-2*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-3 t} \left (c_2 t +c_1 \right ) \\ y \left (t \right ) &= -{\mathrm e}^{-3 t} \left (c_2 t +c_1 +c_2 \right ) \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 43
ode={D[x[t],t]==-4*x[t]-y[t],D[y[t],t]==x[t]-2*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{-3 t} (c_1 (-t)-c_2 t+c_1)\\ y(t)&\to e^{-3 t} ((c_1+c_2) t+c_2) \end{align*}
Sympy. Time used: 0.052 (sec). Leaf size: 37
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(4*x(t) + y(t) + Derivative(x(t), t),0),Eq(-x(t) + 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{2} t e^{- 3 t} - \left (C_{1} - C_{2}\right ) e^{- 3 t}, \ y{\left (t \right )} = C_{1} e^{- 3 t} + C_{2} t e^{- 3 t}\right ] \]