Internal
problem
ID
[9491]
Book
:
Differential
Equations:
Theory,
Technique,
and
Practice
by
George
Simmons,
Steven
Krantz.
McGraw-Hill
NY.
2007.
1st
Edition.
Section
:
Chapter
10.
Systems
of
First-Order
Equations.
Section
A.
Drill
exercises.
Page
400
Problem
number
:
3(e)
Date
solved
:
Tuesday, September 30, 2025 at 06:19:25 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)+2*y(t)+z(t), diff(y(t),t) = -2*x(t)-y(t)+3*z(t), diff(z(t),t) = x(t)+y(t)+z(t)]; dsolve(ode);
ode={D[x[t],t]==3*x[t]+2*y[t]+z[t],D[y[t],t]==-2*x[t]-y[t]+3*z[t],D[z[t],t]==x[t]+y[t]+z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-3*x(t) - 2*y(t) - z(t) + Derivative(x(t), t),0),Eq(2*x(t) + y(t) - 3*z(t) + Derivative(y(t), t),0),Eq(-x(t) - y(t) - z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)