46.1.13 problem 11

Internal problem ID [9516]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. Section 6.2 SOLUTIONS ABOUT ORDINARY POINTS. EXERCISES 6.2. Page 246
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 06:19:58 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+x^{2} y^{\prime }+x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 39
Order:=8; 
ode:=diff(diff(y(x),x),x)+x^2*diff(y(x),x)+x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{6} x^{3}+\frac {1}{45} x^{6}\right ) y \left (0\right )+\left (x -\frac {1}{6} x^{4}+\frac {5}{252} x^{7}\right ) y^{\prime }\left (0\right )+O\left (x^{8}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 42
ode=D[y[x],{x,2}]+x^2*D[y[x],x]+x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_2 \left (\frac {5 x^7}{252}-\frac {x^4}{6}+x\right )+c_1 \left (\frac {x^6}{45}-\frac {x^3}{6}+1\right ) \]
Sympy. Time used: 0.207 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) + x*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{6}}{45} - \frac {x^{3}}{6} + 1\right ) + C_{1} x \left (\frac {5 x^{6}}{252} - \frac {x^{3}}{6} + 1\right ) + O\left (x^{8}\right ) \]