Internal
problem
ID
[9524]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
6
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
Section
6.2
SOLUTIONS
ABOUT
ORDINARY
POINTS.
EXERCISES
6.2.
Page
246
Problem
number
:
19
Date
solved
:
Tuesday, September 30, 2025 at 06:20:03 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=8; ode:=(x-1)*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; ic:=[y(0) = -2, D(y)(0) = 6]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; ic={y[0]==-2,Derivative[1][y][0] ==6}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + (x - 1)*Derivative(y(x), (x, 2)) + y(x),0) ics = {y(0): -2, Subs(Derivative(y(x), x), x, 0): 6} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=8)