Internal
problem
ID
[9547]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
6
SERIES
SOLUTIONS
OF
LINEAR
EQUATIONS.
6.3
SOLUTIONS
ABOUT
SINGULAR
POINTS.
EXERCISES
6.3.
Page
255
Problem
number
:
10
Date
solved
:
Tuesday, September 30, 2025 at 06:20:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=(x^3-2*x^2+3*x)^2*diff(diff(y(x),x),x)+x*(x-3)^2*diff(y(x),x)-(1+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^3-2*x^2+3*x)^2*D[y[x],{x,2}]+x*(x-3)^2*D[y[x],x]-(x+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x - 3)**2*Derivative(y(x), x) - (x + 1)*y(x) + (x**3 - 2*x**2 + 3*x)**2*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)