46.2.32 problem 32

Internal problem ID [9569]
Book : DIFFERENTIAL EQUATIONS with Boundary Value Problems. DENNIS G. ZILL, WARREN S. WRIGHT, MICHAEL R. CULLEN. Brooks/Cole. Boston, MA. 2013. 8th edition.
Section : CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS. 6.3 SOLUTIONS ABOUT SINGULAR POINTS. EXERCISES 6.3. Page 255
Problem number : 32
Date solved : Tuesday, September 30, 2025 at 06:20:53 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x \left (x -1\right ) y^{\prime \prime }+3 y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.037 (sec). Leaf size: 50
Order:=8; 
ode:=x*(x-1)*diff(diff(y(x),x),x)+3*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{4} \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+7 x^{6}+8 x^{7}+\operatorname {O}\left (x^{8}\right )\right )+c_2 \left (-144-96 x -48 x^{2}+48 x^{4}+96 x^{5}+144 x^{6}+192 x^{7}+\operatorname {O}\left (x^{8}\right )\right ) \]
Mathematica. Time used: 0.237 (sec). Leaf size: 77
ode=x*(x-1)*D[y[x],{x,2}]+3*D[y[x],x]-2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
 
\[ y(x)\to c_1 \left (-x^6-\frac {2 x^5}{3}-\frac {x^4}{3}+\frac {x^2}{3}+\frac {2 x}{3}+1\right )+c_2 \left (7 x^{10}+6 x^9+5 x^8+4 x^7+3 x^6+2 x^5+x^4\right ) \]
Sympy. Time used: 0.319 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x - 1)*Derivative(y(x), (x, 2)) - 2*y(x) + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)
 
\[ y{\left (x \right )} = C_{1} x^{4} \left (\frac {2 x^{3}}{315} + \frac {x^{2}}{15} + \frac {2 x}{5} + 1\right ) + O\left (x^{8}\right ) \]