Internal
problem
ID
[9658]
Book
:
DIFFERENTIAL
EQUATIONS
with
Boundary
Value
Problems.
DENNIS
G.
ZILL,
WARREN
S.
WRIGHT,
MICHAEL
R.
CULLEN.
Brooks/Cole.
Boston,
MA.
2013.
8th
edition.
Section
:
CHAPTER
7
THE
LAPLACE
TRANSFORM.
EXERCISES
7.5.
Page
315
Problem
number
:
8
Date
solved
:
Tuesday, September 30, 2025 at 06:21:57 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t) = 1+Dirac(t-2); ic:=[y(0) = 0, D(y)(0) = 1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-2*D[y[t],t]==1+DiracDelta[t-2]; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Dirac(t - 2) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 1,0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)