4.26.11 Problems 1001 to 1100

Table 4.1511: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

Sympy

10661

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-x \left (-x^{2}+5\right ) y^{\prime }-\left (25 x^{2}+7\right ) y = 0 \]

10662

\[ {} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y = 0 \]

10663

\[ {} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y = 0 \]

10664

\[ {} y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

10665

\[ {} y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

10666

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

10667

\[ {} \left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

10668

\[ {} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

10669

\[ {} \left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

10670

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

10671

\[ {} y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = 0 \]

10672

\[ {} y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y = 0 \]

10673

\[ {} 2 t y^{\prime \prime }+\left (1-2 t \right ) y^{\prime }-y = 0 \]

10674

\[ {} 2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

10675

\[ {} 2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

10676

\[ {} 2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

10677

\[ {} t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

10678

\[ {} t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

10679

\[ {} t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

10680

\[ {} t y^{\prime \prime }-\left (t +4\right ) y^{\prime }+2 y = 0 \]

10681

\[ {} t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

10682

\[ {} t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

10683

\[ {} t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

10684

\[ {} t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

10685

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

10686

\[ {} \left (-z^{2}+1\right ) y^{\prime \prime }-3 z y^{\prime }+\lambda y = 0 \]

10687

\[ {} 4 z y^{\prime \prime }+2 \left (1-z \right ) y^{\prime }-y = 0 \]

10688

\[ {} f^{\prime \prime }+2 \left (z -1\right ) f^{\prime }+4 f = 0 \]

10689

\[ {} z y^{\prime \prime }-2 y^{\prime }+y z = 0 \]

10690

\[ {} z y^{\prime \prime }+\left (2 z -3\right ) y^{\prime }+\frac {4 y}{z} = 0 \]

10691

\[ {} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

10692

\[ {} y^{\prime \prime }+x y^{\prime }+3 y = 0 \]

10693

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

10694

\[ {} \left (-4 x^{2}+1\right ) y^{\prime \prime }-20 x y^{\prime }-16 y = 0 \]

10695

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

10696

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x +2\right ) y = 0 \]

10697

\[ {} \left (2 x^{2}+1\right ) y^{\prime \prime }+7 x y^{\prime }+2 y = 0 \]

10698

\[ {} 4 y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

10699

\[ {} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

10700

\[ {} 4 x y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

10701

\[ {} 6 x^{2} y^{\prime \prime }+x \left (1+18 x \right ) y^{\prime }+\left (1+12 x \right ) y = 0 \]

10702

\[ {} 3 x^{2} y^{\prime \prime }-x \left (x +8\right ) y^{\prime }+6 y = 0 \]

10703

\[ {} 2 x^{2} y^{\prime \prime }-x \left (2 x +1\right ) y^{\prime }+2 \left (4 x -1\right ) y = 0 \]

10704

\[ {} 4 x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (2 x +1\right ) y = 0 \]

10705

\[ {} x^{2} y^{\prime \prime }+x \left (3-2 x \right ) y^{\prime }+\left (1-2 x \right ) y = 0 \]

10706

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

10707

\[ {} x^{2} y^{\prime \prime }+x \left (3-x \right ) y^{\prime }+y = 0 \]

10708

\[ {} x^{2} y^{\prime \prime }-\left (2 \sqrt {5}-1\right ) x y^{\prime }+\left (\frac {19}{4}-3 x^{2}\right ) y = 0 \]

10709

\[ {} x^{2} y^{\prime \prime }+x \left (x -3\right ) y^{\prime }+\left (4-x \right ) y = 0 \]

10710

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }-\left (x +2\right ) y = 0 \]

10711

\[ {} x^{2} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x -\frac {3}{4}\right ) y = 0 \]

10712

\[ {} x^{2} \left (1+x \right ) y^{\prime \prime }+x^{2} y^{\prime }-2 y = 0 \]

10713

\[ {} x^{2} y^{\prime \prime }+x \left (x^{2}+6\right ) y^{\prime }+6 y = 0 \]

10714

\[ {} x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

10715

\[ {} x^{2} y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+4 y = 0 \]

10716

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-2 y = 0 \]

10717

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }-\left (2+3 x \right ) y = 0 \]

10718

\[ {} x^{2} y^{\prime \prime }+x \left (5-x \right ) y^{\prime }+4 y = 0 \]

10719

\[ {} 4 x^{2} y^{\prime \prime }+4 x \left (1-x \right ) y^{\prime }+\left (2 x -9\right ) y = 0 \]

10720

\[ {} x^{2} y^{\prime \prime }+2 x \left (x +2\right ) y^{\prime }+2 \left (1+x \right ) y = 0 \]

10721

\[ {} x^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

10722

\[ {} 4 x^{2} y^{\prime \prime }+4 x \left (2 x +1\right ) y^{\prime }+\left (4 x -1\right ) y = 0 \]

10723

\[ {} x^{2} y^{\prime \prime }+x \left (x +4\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

10724

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {9}{4}\right ) y = 0 \]

10725

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

10726

\[ {} 2 x y^{\prime \prime }+5 \left (1-2 x \right ) y^{\prime }-5 y = 0 \]

10727

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10728

\[ {} x y^{\prime \prime }+\left (x +n \right ) y^{\prime }+\left (n +1\right ) y = 0 \]

10729

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

10730

\[ {} x^{2} y^{\prime \prime }+\left (2 x^{2}+x \right ) y^{\prime }-4 y = 0 \]

10731

\[ {} \left (4 x^{3}-14 x^{2}-2 x \right ) y^{\prime \prime }-\left (6 x^{2}-7 x +1\right ) y^{\prime }+\left (6 x -1\right ) y = 0 \]

10732

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

10733

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x -2\right ) y = 0 \]

10734

\[ {} x^{2} \left (1-4 x \right ) y^{\prime \prime }-\frac {x y^{\prime }}{2}-\frac {3 x y}{4} = 0 \]

10735

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}+x \right ) y^{\prime }+\left (x -9\right ) y = 0 \]

10736

\[ {} x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }+\left (3 x -1\right ) y = 0 \]

10737

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+4 x \right ) y^{\prime }+4 y = 0 \]

10738

\[ {} 2 x^{2} y^{\prime \prime }-\left (2+3 x \right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = 0 \]

10739

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }-\frac {y}{4} = 0 \]

10740

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+x y^{\prime }-y = 0 \]

10741

\[ {} 2 \left (1-x \right ) x y^{\prime \prime }+\left (1-11 x \right ) y^{\prime }-10 y = 0 \]

10742

\[ {} \left (1-x \right ) x y^{\prime \prime }+\frac {\left (1-2 x \right ) y^{\prime }}{3}+\frac {20 y}{9} = 0 \]

10743

\[ {} 4 y^{\prime \prime }+\frac {3 \left (-x^{2}+2\right ) y}{\left (-x^{2}+1\right )^{2}} = 0 \]

10744

\[ {} u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

10745

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

10746

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

10747

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

10748

\[ {} u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

10749

\[ {} -a^{2} y+y^{\prime \prime } = \frac {6 y}{x^{2}} \]

10750

\[ {} y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

10751

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

10752

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

10753

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

10754

\[ {} y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

10755

\[ {} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

10756

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

10757

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

10758

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

10759

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

10760

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]