47.1.9 problem 9

Internal problem ID [9729]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number : 9
Date solved : Tuesday, September 30, 2025 at 06:32:23 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +y\right )^{2} {y^{\prime }}^{2}&=y^{2} \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 47
ode:=(x+y(x))^2*diff(y(x),x)^2 = y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x}{\operatorname {LambertW}\left (x \,{\mathrm e}^{c_1}\right )} \\ y &= -x -\sqrt {x^{2}+2 c_1} \\ y &= -x +\sqrt {x^{2}+2 c_1} \\ \end{align*}
Mathematica. Time used: 0.067 (sec). Leaf size: 63
ode=(x+y[x])^2*(D[y[x],x])^2==y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x}{W\left (e^{-1-c_1} x\right )}\\ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {K[1]+1}{K[1] (K[1]+2)}dK[1]=-\log (x)+c_1,y(x)\right ]\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 1.228 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + y(x))**2*Derivative(y(x), x)**2 - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = e^{C_{1} + W\left (x e^{- C_{1}}\right )}, \ y{\left (x \right )} = - x - \sqrt {C_{1} + x^{2}}, \ y{\left (x \right )} = - x + \sqrt {C_{1} + x^{2}}\right ] \]