Internal
problem
ID
[9768]
Book
:
Elementary
differential
equations.
By
Earl
D.
Rainville,
Phillip
E.
Bedient.
Macmilliam
Publishing
Co.
NY.
6th
edition.
1981.
Section
:
CHAPTER
16.
Nonlinear
equations.
Section
99.
Clairaut
equation.
EXERCISES
Page
320
Problem
number
:
23
Date
solved
:
Tuesday, September 30, 2025 at 06:40:56 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _dAlembert]
ode:=4*x*diff(y(x),x)^2-3*y(x)*diff(y(x),x)+3 = 0; dsolve(ode,y(x), singsol=all);
ode=4*x*(D[y[x],x])^2-3*y[x]*D[y[x],x]+3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x)**2 - 3*y(x)*Derivative(y(x), x) + 3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (sqrt(-48*x + 9*y(x)**2)/8 + 3*y(x)/8)/x c