47.4.20 problem 21

Internal problem ID [9794]
Book : Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section : CHAPTER 16. Nonlinear equations. Section 101. Independent variable missing. EXERCISES Page 324
Problem number : 21
Date solved : Tuesday, September 30, 2025 at 06:41:35 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 2 y^{\prime \prime }&=\sin \left (2 y\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=-\frac {\pi }{2} \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple
ode:=2*diff(diff(y(x),x),x) = sin(2*y(x)); 
ic:=[y(0) = -1/2*Pi, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=2*D[y[x],{x,2}]==Sin[2*y[x]]; 
ic={y[0]==-Pi/2,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

{}

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sin(2*y(x)) + 2*Derivative(y(x), (x, 2)),0) 
ics = {y(0): -pi/2, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out