48.2.21 problem 24

Internal problem ID [9839]
Book : Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section : CHAPTER 16. Nonlinear equations. Miscellaneous Exercises. Page 340
Problem number : 24
Date solved : Tuesday, September 30, 2025 at 06:42:49 PM
CAS classification : [_quadrature]

\begin{align*} x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2}&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=x*diff(y(x),x)^2+y(x)*(1-x)*diff(y(x),x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1}{x} \\ y &= c_1 \,{\mathrm e}^{x} \\ \end{align*}
Mathematica. Time used: 0.028 (sec). Leaf size: 26
ode=x*D[y[x],x]^2+y[x]*(1-x)*D[y[x],x]-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^x\\ y(x)&\to \frac {c_1}{x}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.091 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x)**2 + (1 - x)*y(x)*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} e^{x}, \ y{\left (x \right )} = \frac {C_{1}}{x}\right ] \]