Internal
problem
ID
[9948]
Book
:
Elementary
differential
equations.
Rainville,
Bedient,
Bedient.
Prentice
Hall.
NJ.
8th
edition.
1997.
Section
:
CHAPTER
18.
Power
series
solutions.
18.9
Indicial
Equation
with
Difference
of
Roots
a
Positive
Integer:
Logarithmic
Case.
Exercises
page
384
Problem
number
:
14
Date
solved
:
Tuesday, September 30, 2025 at 06:45:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=8; ode:=x^2*diff(diff(y(x),x),x)+x*(1-2*x)*diff(y(x),x)-(1+x)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+x*(1-2*x)*D[y[x],x]-(x+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,7}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(1 - 2*x)*Derivative(y(x), x) - (x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=8)