Internal
problem
ID
[9994]
Book
:
Selected
problems
from
homeworks
from
different
courses
Section
:
Math
2520,
summer
2021.
Differential
Equations
and
Linear
Algebra.
Normandale
college,
Bloomington,
Minnesota
Problem
number
:
HW
5
problem
2
Date
solved
:
Tuesday, September 30, 2025 at 06:45:51 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)+y(x) = tan(x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]==Tan[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - tan(x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)