Internal
problem
ID
[9997]
Book
:
Selected
problems
from
homeworks
from
different
courses
Section
:
Math
2520,
summer
2021.
Differential
Equations
and
Linear
Algebra.
Normandale
college,
Bloomington,
Minnesota
Problem
number
:
HW
5
problem
7
Date
solved
:
Tuesday, September 30, 2025 at 06:45:53 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 2*x(t)-y(t), diff(y(t),t) = -x(t)+2*y(t)+4*exp(t)]; dsolve(ode);
ode={D[x[t],t]==2*x[t]-y[t],D[y[t],t]==-x[t]+2*y[t]+4*Exp[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) + y(t) + Derivative(x(t), t),0),Eq(x(t) - 2*y(t) - 4*exp(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)